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Abstract— In this paper, exact closed-form expressions are
derived for the generalized phase crossing rate as well as for the
crossing statistics of random frequency modulation (FM) noise in
Weibull fading channels. These expressions specialize to those of
the Rayleigh case, which are known in the literature. In addition,
the conditional probability density functions of the envelope and
the random FM noise conditioned on an arbitrary phase upward
crossing level are obtained.
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I. INTRODUCTION

The Weibull distribution is an empirical distribution, which
was first used as a statistical model for reliability analysis.
Its simplicity and flexibility soon paved its way to wireless
communications applications. In [1], a physical model for
a generalized fading distribution was proposed, in which
Weibull appears as a special case. In [2], this model was
used in order to obtain higher order statistics for the Weibull
environment. In essence, as proposed in [1], the fading model
for the Weibull distribution considers a signal composed of a
cluster of multipath waves propagating in a non-homogeneous
environment. Within this cluster, the phases of the scattered
waves are random. The resulting envelope is obtained as a
non-linear function of the modulus of the sum of the multipath
components. Whereas in [1] the non-linearity is assumed to
affect the envelope, in the present work, both envelope and
phase are considered to be influenced by it.

In wireless communication systems, the envelope and phase
of the received signal vary in a random manner because of
multipath fading. It is therefore important to investigate the
second order statistics of the fading channels. Besides the
statistics of the fading envelope, the statistical properties of
the phase process and its derivative are also of interest. For
instance, the phase behavior characterization is useful in the
design of optimal carrier recovery schemes needed in the
synchronization subsystem of coherent receivers [3]. Another
notable example involves the performance of FM receivers
using a limiter-discriminator for detection, where random FM
spikes generated by phase jumps deteriorate the error-rate
performance [4]. Thus, the level crossing theory plays a central
role in the determination of the statistical properties of the
channel phase and random FM noise [5].

In this paper, we derive closed-form expressions for the sta-
tistics of random FM noise in Weibull fading channels. Closed-
form expressions are also derived for the phase crossing rate
(PCR) conditioned on the fact that the fading envelope is

within an arbitrary range, whose inferior and superior limits
are denoted here as r1 and r2, respectively. In addition,
the probability density functions of the signal envelope and
random FM noise conditioned on the upward crossings of the
phase through a fixed level are obtained. The expressions are
validated by specializing the general results to some particular
cases whose solutions are known.

II. PRELIMINARIES AND THE WEIBULL FADING MODEL

The Rayleigh fading envelope Rl and phase Θl are
described by

Rl =
√

X2 + Y 2 (1a)

Θl = arctan
Y

X
(1b)

where X and Y are independent zero-mean Gaussian
processes with identical variances σ2. The time derivative of
X and Y are, respectively, denoted as Ẋ and Ẏ , which have
equal variances expressed as σ̇2 = 2π2f2

mσ2, where fm is the
maximum Doppler shift in Hertz [6]. From (1), the Rayleigh
complex signal can be expressed as Zl = Rl exp(jΘl).

Let R and Θ be random variables representing, respectively,
the envelope and phase of the Weibull signal. In the Weibull
fading model, the probability density function (PDF) pR(r)
and the cumulative distribution function (CDF) PR(r) of the
envelope are well-known statistics given by

pR(r) =
αrα−1

Ω
exp(−rα

Ω
) (2a)

PR(r) = 1 − exp(−rα

Ω
) (2b)

where α stands for the Weibull fading parameter (α > 0) and
1Ω = E(rα) = 2σ2.

According to [1], the resulting complex signal of a Weibull
process is a non-linear process obtained not simply as the
modulus of the sum of the multipath component, but as this
modulus to a certain given exponent. Suppose that such a non-
linearity is in the form of the power parameter α so that the
resulting complex signal Z is

Z = Z
2/α
l = R

2/α
l exp(j 2Θl/α) (3)

= R exp(j Θ) (4)

1E(·) denotes the expectation operator
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As α increases, the severity of the fading decreases. For the
special case of α = 2, (3) reduces to the well-known Rayleigh
complex process.

Because the non-linearity is in the form of a power, the
resulting envelope is observed as the modulus of the multipath
Rayleigh component Rl to the power of 2/α > 0. As seen
before, this non-linearity also affects the phase, so that the
resulting phase is obtained as a linear function of the phase
Rayleigh component Θl. Then, from (3) and (4), the relation
between the Weibull and the Rayleigh processes is given by

R = R
2
α

l (5a)

Θ =
2Θl

α
(5b)

III. STATISTICS OF RANDOM FM NOISE

The random nature of the time-varying phase of the fading
signal, denoted as Θ̇(t), causes a phenomenon known as
random FM noise [6]. For the purpose of deriving the statistics
of random FM noise and the analysis of the crossing statistics,
the joint PDF pR,Ṙ,Θ,Θ̇(r, ṙ, θ, θ̇) of the processes R(t), Ṙ(t),
Θ(t), and Θ̇(t) is required. This joint PDF can be obtained
from the joint PDF Rayleigh pRl,Ṙl,Θ1,Θ̇l

(rl, ṙl, θl, θ̇l), which
is given in [6]. By means of (5) and [6, Eq. 1.3-33], and
following the standard statistical procedure of transformation
of variates, the Weibull joint PDF can be expressed as

pR,Ṙ,Θ,Θ̇(r, ṙ, θ, θ̇) =
rα

4π2σ2σ̇2
exp

[

−1

2

(

rα

σ2

+
α2rα−2ṙ2

4σ̇2
+

rαα2θ̇2

4σ̇2

)]

× 1

|J | (6)

where |J | is the Jacobian of the transformation given by
16r2−α

α4 . By substituting |J | in (6), the joint PDF of the
envelope R and the phase Θ, and their respective time deriv-
atives, can be derived as

pR,Ṙ,Θ,Θ̇(r, ṙ, θ, θ̇) =
α4r2α−2

64π2σ2σ̇2

× exp



−
rα−2

(

α2σ2
(

ṙ2 + r2θ̇2
)

+ 4r2σ̇2
)

8σ2σ̇2





(7)

where r ≥ 0, −∞ < ṙ < −∞, − 2π
α ≤ θ < 2π

α , and −∞ <

θ̇ < ∞. Note that (7) does not depend on the phase θ.
Performing the integrating in (7) with respect to ṙ, the joint

PDF pR,Θ,Θ̇(r, θ, θ̇) can be directly obtained as

pR,Θ,Θ̇(r, θ, θ̇) =
α3r

3α

2
−1

16
√

2π
3
2 σ2σ̇

exp

[

−1

8
rα

(

4

σ2
+

α2θ̇2

σ̇2

)]

(8)

In a similar manner, we found that

pΘ,Θ̇(θ, θ̇) =
α2

2πσ2σ̇

(

4

σ2
+

α2θ̇2

σ̇2

)− 3
2

(9)
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Fig. 1. PDF of Θ̇ for different values of α/fm

pΘ̇(θ̇) =
2α

σ2σ̇

(

4

σ2
+

α2θ̇2

σ̇2

)− 3
2

(10)

By setting α = 2, (10) reduces to the case Rayleigh fading
given in [6, Eq. 1.4-1], as expected. It follows from (10) that
the CDF of Θ̇(t) is obtained in an exact manner as

PΘ̇(θ̇0) =
1

2



1 +
αθ̇0

σ̇

(

4

σ2
+

α2θ̇0

2

σ̇2

)− 1
2



 (11)

Again, by setting α = 2, (11) reduces to [6, Eq. 1.4-4]. The
fact that pΘ̇(θ̇) is an even function in θ̇ leads to E{Θ̇(t)} = 0
Furthermore, it can be verified that the second moment of Θ̇(t)
equals

E{Θ̇(t)2} =

∫ ∞

−∞
θ̇2pΘ̇(θ̇)dθ̇ = ∞ (12)

Thus, the variance of Θ̇(t), defined as σ2

Θ̇
= E{Θ̇(t)2} −

E{Θ̇(t)2}, is infinite.

For illustration purpose, Figs. 1 and 2 sketch pΘ̇(θ̇) and
PΘ̇(θ̇) for several values of α/fm. In Fig. 1, note that the Θ̇
become determinist when α/fm tends to infinity. From Fig.
2, as α/fm increases, more quickly the CDF tends towards to
the unitary value.

IV. GENERALIZED PCR

The usual (unconditioned) PCR, denoted by NΘ(θ0), is
defined as the average number of upward (or downward)
crossings per second at a specified phase level θ0. This
definition can be extended to a general case, in which the
crossing rate of the phase is conditioned on the arbitrary range
r1 and r2 of the fading envelope. Thus, a general expression
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Fig. 2. CDF of Θ̇ for different values of α/fm

for PCR can be presented as

NΘ|R(θ0; r1, r2) =

∫ ∞

0

θ̇pΘ,Θ̇;R(θ, θ̇|r1 < R < r2)dθ̇

=

∫ r2

r1

∫∞
0

θ̇pR,Θ,Θ̇(r, θ0, θ̇)dθ̇dr

PR(r2) − PR(r1)
(13)

Substituting (2b) and (8) into (13), and carrying out some ma-
nipulations, the authors have found an exact and closed-form
expression for generalized PCR in Weibull fading channels

NΘ(θ0; r1, r2) =
σ̇

4πσ
erf

(

r
α/2

1√
2σ

,
r

α/2

2√
2σ

)

×





1

exp
(

− rα

1

2σ2

)

− exp
(

− rα

2

2σ2

)



 (14)

where erf(a, b) = 2√
π

∫ b

a
exp(−t2)dt. Note that (14) is

independent to the specific phase level θ0.
In particular, for α = 2, we obtain the generalized PCR for

the Rayleigh fading channel, which can be expressed as

NΘ(θ0; r1, r2) =
σ̇

4πσ
erf

(

r1√
2σ

,
r2√
2σ

)

×





1

exp
(

− r2
1

2σ2

)

− exp
(

− r2
2

2σ2

)



 (15)

After obtaining the generalized PCR, let us particularized
this statistic for the specific case (unconditioned) in which
r1 = 0 and r2 = ∞. Then, applying this approach to (14), we
obtain

NΘ(θ0) =
σ̇

4πσ
(16)

Observe that NΘ(θ0) is independent on the specific phase level
θ0 and the power parameter α. Note also that (16) gives the

same result of the Rayleigh case. Although this leads to a
same result, (9) is different of the Rayleigh case. Thus, for the
unconditional case, it can be observed that the non-linearity,
expressed for the α parameter, does not affect the phase
process, although the crossing rate of the envelope process
[7] be affected. To the best of the authors’ knowledge, this
has never been reported in the literature.

V. CONDITIONAL PDFS OF R(t) AND Θ̇(t)

This section relates the conditional PDFs of the envelope
and the random FM noise Θ̇(t) conditioned on the upward
crossings events occurring at an arbitrary phase crossing 2 level
θ+
0 . These conditional PDFs allows us to describe the statistics

of R(t) and Θ̇(t) at the instants when Θ(t) = θ+
0 . In the

following, pR|θ+

0

(r0) and pΘ̇|θ+

0

(θ̇0) denote, respectively, the
conditional PDF of R(t) given the phase crossing level θ+

0 and
the conditional PDF of Θ̇(t) given the phase crossing level θ+

0 .

To obtain the PDFs described above, it is necessary to attain
the joint conditional CDF PR,Θ̇|θ+

0

(r0, θ̇0) which is defined in
[8] and [9] as

PR,Θ̇|θ+

0

(r0, θ̇0) =

∫ r0

0
dr
∫ θ̇0

0
θ̇pR,Θ,Θ̇(r, θ+

0 , θ̇)dθ̇

NΘ(θ+
0 )

r0 ≥ 0, θ̇0 ≥ 0 (17)

Replacing (8) and (16) in (17), PR,Θ̇|θ+

0

(r0, θ̇0) follows. For
the sake of simplicity this expression will be omitted.

From the joint conditional CDF PR,Θ̇|θ+

0

(r0, θ̇0), the desired
conditional PDF pR|θ+

0

(r0) is obtained as

pR|θ+

0

(r0) =
d

dr
PR,Θ̇|θ+

0

(r0,∞)

=
αr

α

2
−1

0√
2πσ

exp

(

− rα
0

2σ2

)

(18)

Following a similar rationale, the conditional PDF pΘ̇|θ+

0

(θ̇0)
can be expressed as

pΘ̇|θ+

0

(θ̇0) =
d

dθ̇0

PR,Θ̇|θ+

0

(∞, θ̇0)

=
2α2θ̇0

σ2σ̇

(

4

σ2
+

α2θ̇0

2

σ̇2

)− 3
2

(19)

Figs. 3 and 4 outline the conditional PDFs for several fading
parameters (α = 1, 2, 3, 4, 5). In Fig. 3, note that it reduces
to a Gaussian function, which is verify in (18) when α =
2. Furthermore, observe that R and Θ̇ (presented in Fig. 4)
become determinist when α tends to infinity.

2The superscript + refer to the upward crossings. Note also that in upward
crossings events 0 ≤ Θ̇(t) < ∞.
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VI. CONCLUSIONS

In this letter, an exact and closed-form expression was
derived for the generalized PCR in Weibull fading channels.
In addition, statistics of the random FM noise as well as the
PDFs of the envelope and random FM noise conditioned at an
arbitrary phase level were obtained. These expressions were
validated by specializing the general results for the Rayleigh
case. It has been found that the unconditioned crossing rate
of the phase process for the Weibull fading environment was
the same as that of the Rayleigh one, although the joint PDF
of the phase and its time derivative were different.
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